
UAV Pursuit of a Moving Target

Jacqui Abalo1, Andrew Klingelhofer2, and John Ryan3

Abstract— We implement the Kalman Filter in a
project which combines recent theory in object tracking
and obstacle recognition with modern drone technology
(Parrot Bebop 2.0) to perform UAV pursuit of a moving
target. The Filter processes keypoints and candidate
areas in an input frame recorded by the onboard camera,
and outputs an estimation of the location of a pre-
selected object. Our project does not use learning, so
the UAV may be programmed to follow an arbitrary
object in only one initial frame. Furthermore, the Filter
is applied to process obstacles, and track their movement
across several frames. This project is a test of the
Kalman Filter’s ability to handle noise as found in drone
flight instability, keypoint misidentification, and sudden
changes in camera orientation.

I. BACKGROUND

Applications of a software by which a UAV may
autonomously pursue a moving target abound: exam-
ples include video capture for demonstrative purposes,
police pursuit of an evading suspect, and monitoring
animal behavior. Due to advances both in drone tech-
nology and computer vision techniques in the last few
years, this area is exciting and worthy of research and
experimentation.

II. PROBLEM IDENTIFICATION

To what extent can current object recognition tech-
niques coupled with adaptive modifications allow a
modern multicopter to follow a moving target? Our
problem is to explore this question by attempting to
program a Parrot Bebop drone to avoid obstacles and
to follow a person wearing a T-shirt with a distinct
symbol on the back as the person walks around.

III. PROJECT AIM

The initial aim of our project was using the imaging
capability of our Parrot Bebop Drone to create an

1Jacqui Abalo is a sophomore majoring in Computer Science at
NYU Abu Dhabi

2Andrew Klingelhofer is a graduating senior in Gallatin studying
Computer Science and the social, political, and economic effects of
technology.

3John Ryan is a graduating senior in CAS majoring in Computer
Science and Mathematics.

algorithm using a Kalman filter [3] that recognizes an
object and follows said object while avoiding other
obstacles. We slightly modified by removing the ob-
stacle avoidance. Our aim now reads, we aim to use
the imaging capability of our Parrot Bebop Drone
to create an algorithm using a Kalman filter [3] that
recognizes an object and follows it. The Kalman Filter
allows us to identify key points or points of interest
on the object, providing information about the object
needed to continually identify and update positioning.
From that information, we create a bounding box as
shown in the results section with various key points
and estimations of the center of the object. This is
particularly useful when computing the drones distance
from the object. We are limited by the resolution of
the drones camera in that we are unable to identify the
object when too close or too far way. This bounding
box and estimated center will provide a comprehensive
way to compute the necessary distance the drone needs
to be in order to correctly identify the object. Heres a
high level description of the steps of our process:

1) Drone captures video image (.h264 file)
2) Convert .h264 file to mp4.
3) Send .mp4 to CMT and receive bounding box

information.
4) Pass CMT data to Kalman Filter for noise reduc-

tion processing.
5) Kalman Filter identifies key points and creates

bounding box.
6) Based on the information we receive from the

Kalman Filter, send commands to the drone in
order to keep within range of object.

7) Repeat.

IV. RESEARCH QUESTIONS

In researching libraries for the Parrot Bebop Drone,
we found two, [4] and [5]. One is a node.js library,
the other is Python. We found the node.js library more
comprehensive and usable, so we have chosen to use
that one as our functioning library. Further code details
on our implmentation are given in Appendix A.

With both of these libraries, we are able to control
the drone using either Python for [4] or javascript for

[5]. They provide us with the means to easily add drone
flying functionality to our already existing Kalman
filter.

Our initial research questions were as follows:
1) How can we use the data we gather from the

Kalman filter to help us avoid obstacles while
keeping pace with the target object?

2) What limitations or advantages are encountered
when planning a path with a drone? How might
those differences inform our understanding of
path planning?

However, due to time complications, our research
questions were adjusted to the following:

1) How effective is a Kalman filter at handling noise
associated with target tracking by a drone?

2) What are the limitations to real-time object-
tracking by unmanned vehicles as presented by
this project?

V. SIGNIFICANCE OF RESEARCH
QUESTIONS

1) How effective is a Kalman filter at handling
noise associated with target tracking by a
drone? - Said noise could occur in the form
of flight instability, keypoint misidentification,
sudden changes in camera orientation, or target
obstruction. The importance of the Kalman filter
is that it allows the target to be continuously
tracked without any interruptions caused by noise
or obstructions. Its efficacy would affect how well
an object can be tracked.

2) What are the limitations to real-time object-
tracking by unmanned vehicles as presented
by this project? - As the scope of our research
project is currently narrow, this is an important
question to answer for the purposes of project
expansion. That is to say, if this project were
taken further and implemented on a larger scale,
what bottlenecks would we have to overcome?

VI. LITERATURE REVIEW

1) Computer Vision Based General Object Fol-
lowing for GPS Denied Multirotor Unmanned
Vehicles: This is a project quite similar to ours,
except that it uses an AR Drone 2.0 with the
OpenTLD library (as compared to our Parrot
Bebop with the CMT library) to autonomously
detect and follow a variety of objects at varying
distances. Though the scope of this project is
wider than ours, it acts as a useful guideline.

2) Clustering of Static Adaptive Correspon-
dences for Deformable Object Tracking
(CMT): CMT is an algorithm which, given an
initial image of the target object, tracks the object
in a series of frames. The algorithm is discussed
in more detail in the theoretical framework sec-
tion.

3) Object Tracking Using a Kalman Filter: This
MATLAB implementation of a Kalman filter for
face tracking is the basis for our python imple-
mentation. As is the case with our project, the
state refers to the bounding box of the detected
face, given by the upper left and lower right
corners of the box.

4) Robotica/Katarina: A python library for con-
trolling the Parrot Bebop drone.

5) Hybridgroup/node-bebop: A node.js library for
controlling the Parrot Bebop drone.

VII. THEORETICAL FRAMEWORK

1) Object recognition in a moving frame using
CMT: CMT is the method used for detecting the
target object. The algorithm works as follows:
Initially, the target object is broken down into
various keypoints, each with its own descriptor.
Keypoints are tracked from previous frame to
current frame by estimating optic flow. Keypoints
are then matched by comparing their descriptors.
The errors associated with tracking and matching
are reduced by letting each keypoint vote for
the target objects center. Votes are clustered and
outliers are removed. Then a new bounding box
is computed based on remaining keypoints.

2) Kalman Filtering: As explained by Welch and
Bishop in [6], a Kalman Filter is defined by a set
of mathematical equations that provide a recur-
sive means of estimating the state of a process
in a way that minimizes error, allowing for the
estimation of past, present and future states. For
the purposes of our project, the state refers to the
location of the target object, which is defined by
a bounding box. Our Kalman filter estimates the
location and dimensions of this bounding box on
the screen, using the coordinates of the upper left
and lower right corners.

VIII. RESEARCH
METHODS/METHODOLOGY

Our methods followed a gradual approach to the final
goal. We started by examining existing real time object-
recognition libraries to learn about current methods in

tracking objects in video, and settled on using CMT
for this research project. We then moved on to testing
software in various settings and with various different
objects - first with a stationary camera, then with a
hovering UAV, and finally with a mobile drone.

IX. RESULTS

Our first goal was to achieve object tracking via a
modern algorithm. Using the CMT algorithm outlined
in [1], we track noisy (having many keypoints) objects
as they move around in a video. The following are a
few screen shots to exhibit this:

Fig. 1. Keypoints are designated by blue and white dots.

Fig. 2. The program is adaptive to partial (but not complete)
obstructions.

Fig. 3. Recognition is not hindered by change in scale.

We then fed the coordinates of the blue rectangle to a
Kalman Filter, so as to handle observation and process
noise, and to allow tracking to persist through complete
obstruction. The following screen shots demonstrate the
effect of this addition.

Fig. 4. Blue is initial approximation, green is Kalman
Filtered approximation.

Fig. 5. The Kalman Filter allows an approximation to remain
even when the object is completely obstructed.

Finally, we applied this procedure to video obtained
from the Parrot Bebop multicopter. As a physical
demonstration of the object tracking, we’ve included
instructions in the program to detect the horizontal
displacement of the object from the center of the
frame, and to direct the drone to fly to a different
spatial/angular configuration such that the object will
return to the center of the frame. The following images
demonstrate the drone following a distinct logo on a
sweater as its moved around a room.

Fig. 6. Immediately after takeoff, the drone takes a photo
and the user specifies the target.

Fig. 7. Applying the Kalman Filter to the results of the object
tracking algorithm, the drone rotates to keep the object in
view.

Due to issues with processing speed, our current
drone implementation suffers from a time lag, meaning
that a fast-moving target cannot be tracked effectively.

X. CONCLUSIONS

We conclude that the Kalman Filter has worked
in reducing the noise and producing a smooth out-
put based on the noisy output of the object tracking
algorithm. Furthermore, it successfully dealt with the
noise of the video signal from the multicopter, which
existed largely due to the instability and persistent self-
corrective maneuvers of the multicopter in flight.

Although our implementation involves only slightly
modifying the drone’s configuration to keep an object
in flight, future work may go further with this task, and
consider changes in altitude of the target, as well as
permanent obstructions around which the drone must
navigate. The effectiveness of the Kalman Filter in
our implementation should give confidence that other
navigation algorithms can be applied effectively in such
endeavors.

XI. RESOURCES

1) Parrot Bebop Drone (with built-in camera)
2) Python
3) Hybridgroup/node-bebop - details found in [5]
4) OpenCV/CMT

REFERENCES

[1] Nebehay, G. and Pflugfelder, R. (2015). Clustering of Static-
Adaptive Correspondences for Deformable Object Tracking.
http://www.gnebehay.com/publications/
cvpr_2015/cvpr_2015.pdf.

[2] Pestana, S. L. and Saripalli, C. (2014). Computer Vision
Based General Object Following for GPS denied Multirotor
Unmanned Vehicles. http://ieeexplore.ieee.org/
stamp/stamp.jsp?arnumber=6858831.

[3] (2011). Object Tracking Using a Kalman Filter(MATLAB).
https://blog.cordiner.net/2011/05/03/
object-tracking-using-a-kalman-filter-matlab/.

[4] Robotika/katarina. (2015). https://github.com/
robotika/katarina.

[5] Hybridgroup/node-bebop.https://github.com/
hybridgroup/node-bebop.

[6] Welch, G. and Bishop, G. (2006). An introduction
the Kalman Filter. https://s3.amazonaws.
com/piazza-resources/ij4dty42mbl4dc/
imf3e5rk2on5le/welchbishopkalman_intro.
pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&
Expires=1462244427&Signature=PRnipFE3ef%
2Bb%2FshUJRnZCvRejt0%3D.

http://www.gnebehay.com/publications/cvpr_2015/cvpr_2015.pdf
http://www.gnebehay.com/publications/cvpr_2015/cvpr_2015.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6858831
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6858831
https://blog.cordiner.net/2011/05/03/object-tracking-using-a-kalman-filter-matlab/
https://blog.cordiner.net/2011/05/03/object-tracking-using-a-kalman-filter-matlab/
 https://github.com/robotika/katarina
 https://github.com/robotika/katarina
https://github.com/hybridgroup/node-bebop
https://github.com/hybridgroup/node-bebop
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D
https://s3.amazonaws.com/piazza-resources/ij4dty42mbl4dc/imf3e5rk2on5le/welchbishopkalman_intro.pdf?AWSAccessKeyId=AKIAIEDNRLJ4AZKBW6HA&Expires=1462244427&Signature=PRnipFE3ef%2Bb%2FshUJRnZCvRejt0%3D

XII. APPENDIX

[A] - Detailed Description of Implementation
As mentioned in Section IV, we use a node.js library for communication with the drone (see [5]). Using this

library, we are able to stream video from the drone’s camera to a h264 file. This works in real time (other
methods involve storing video inside the drone’s memory for later retrieval) and allows for commands to be sent
to the drone simultaneously. However, in order to use OpenCV to do video processing for object recognition,
we need the video file in a different format. To handle this, we use Python’s subprocess module to execute the
bash command ffmpeg to convert from h264 to mp4.

Moreover, we don’t run ffmpeg on the video.h264 file which is constantly being updated, because that would
result in several redundant conversions, and a collapse in performance after even a short period of time. To work
around this, we employ the Python read method for files, to continually check the video.h264 file for more bytes.
When new bytes were found, they are written to a new file, temp.h264. Then, ffmpeg converts these files to mp4
files, which are then processed by OpenCV for object tracking.

There are several problems with this approach. Continually performing file opening and closing is horrible for
real time performance. ffmpeg fails to convert a stream of bytes from h264 to mp4 from time to time. The h264
stream from the drone via the node.js library is very choppy. We encourage readers interested in trying a similar
project to begin with getting clean and quick video stream from the drone’s camera to the device performing the
object recognition computations.

For each frame that CMT processes, a CSV file named after the frame number is written. This CSV file
contains, in clockwise order beginning from the top left corner, the coordinates of each corner of the bounding
box computed by CMT. A png image showing this CMT-measured bounding box in blue is also saved to the
output directory. Kalman filtering relies on the data in the CSV file, reading in the top left and bottom right
corners to represent the state of the object on the screen as measured by CMT. Filtering is performed on this
measured state to provide the estimated state. For comparison purposes, a new green bounding box using the
estimated state as coordinates is also drawn on the png image showing the CMT-measured state.

Finally, once our Python program has identified the location and size of the object’s bounding box as
approximated by the Kalman Filter, it decides whether to give instructions to the drone. For example, if the
box has shifted, the drone should rotate. If the box has changed size, the drone should move forward/backward.
If the box has done both simultaneously, the drone should drift either left, right, up, or down. To communicate
the instruction to the node.js file, the Python process writes a number to a file in the same directory. Once a
second, the node.js process checks this file, and sends a command to the drone based on what number is written.
Any number read from the file is then set back to 0 (meaning hover), unless the number was 2 (meaning land).
[B] - Python Implementation of [3]. Kalman filter and object tracking.

import cv2
import numpy
import os. path
import numpy . matlib
from numpy . linalg import inv

def kalman predict (x,P,F,Q):
x = F ∗x; # predicted state
P = F ∗P ∗F. transpose () + Q; # predicted estimate covariance
res = [x, P];
return res ;

def kalman update (x,P,z,H,R):
y = z − H ∗x; # measurement error / innovation
S = H ∗P ∗H. transpose () + R; # measurement error / innovation covariance

K = P ∗H. transpose ()∗ inv (S); # optimal Kalman gain
x = x + K ∗y; # updated state estimate
P = (numpy . matlib . identity (x. shape [0]) − K ∗H)∗P; # updated estimate covariance

res = [x, P];
return res ;

define the filter

x = numpy . matlib . zeros ((6 ,1));
F = numpy . matrix (’1 0 0 0 1 0;

0 1 0 0 0 1;
0 0 1 0 1 0;
0 0 0 1 0 1;
0 0 0 0 1 0;
0 0 0 0 0 1’);

Q = numpy . matrix (’0.25 0 0 0 0.5 0;
0 0.25 0 0 0 0.5;
0 0 0.25 0 0.5 0;
0 0 0 0.25 0 0.5;
0.5 0 0.5 0 1 0;
0 0.5 0 0.5 0 1’);

Q [:] = [a ∗0.01 for a in Q];
H = numpy . matrix (’1 0 0 0 0 0;

0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0’);

R = numpy . matlib . identity (4);
R [:] = [b ∗42.25 for b in R];
P = numpy . matlib . identity (6);
P [:] = [c ∗10000 for c in P];

n = 1;
while True :

number = ’%08 d’%(n);
filename = (’ output / bbox ’ + number + ’. csv ’);
if not os. path . isfile (filename):

break ;

read in the detected object ’s bounding box dimensions
fid = open (filename);
fid . readline (); # ignore the header
detections = [];
for i in fid :

detections . append (i. strip (). split (’ ’));
fid . close ();

meas x1 = float (detections [0][0]);
meas x2 = float (detections [2][0]);
meas y1 = float (detections [0][1]);

meas y2 = float (detections [2][1]);
z = numpy . matrix ([[meas x1], [meas x2], [meas y1], [meas y2]]);

step 1: predict
result = kalman predict (x,P ,F,Q);
x = result [0];
P = result [1];

step 2: update (if measurement exists)
if all (j>0 for j in z):

result = kalman update (x,P,z,H,R);
x = result [0];
P = result [1];

est z = H ∗x;
est x1 = est z [0];}

[B] - CMT with Kalman Filtering and Video Streaming

#!/ usr / bin / env python

import cv2
import argparse
import os. path
import time
import io
import subprocess
import CMT
import numpy
import util
import numpy . matlib
from numpy . linalg import inv

Kalman Filter Setup

def kalman predict (x,P,F,Q):
x = F ∗x; # predicted state
P = F ∗P ∗F. transpose () + Q; # predicted estimate covariance
res = [x, P];
return res ;

def kalman update (x,P,z,H,R):
y = z − H ∗x; # measurement error / innovation
S = H ∗P ∗H. transpose () + R; # measurement error / innovation covariance
K = P ∗H. transpose ()∗ inv (S); # optimal Kalman gain
x = x + K ∗y; # updated state estimate
P = (numpy . matlib . identity (x. shape [0]) − K ∗H)∗P; # updated estimate covariance

res = [x, P];
return res ;

Set up CMT parsing / necessary for writing csv data

parser = argparse . ArgumentParser (description =’Track an object .’)
parser . add argument (’−−output−dir ’, dest =’ output ’, help =’ Specify a directory for output data .’)

args = parser . parse args ()

if args . output is not None :
if not os. path . exists (args . output):

os. mkdir (args . output)
elif not os. path . isdir (args . output):

raise Exception (args . output + ’ exists , but is not a directory ’)

define the filter

x = numpy . matlib . zeros ((6 ,1));
F = numpy . matrix (’1 0 0 0 1 0;

0 1 0 0 0 1;
0 0 1 0 1 0;
0 0 0 1 0 1;
0 0 0 0 1 0;
0 0 0 0 0 1’);

Q = numpy . matrix (’0.25 0 0 0 0.5 0;
0 0.25 0 0 0 0.5;
0 0 0.25 0 0.5 0;
0 0 0 0.25 0 0.5;
0.5 0 0.5 0 1 0;
0 0.5 0 0.5 0 1’);

Q [:] = [a ∗0.01 for a in Q];
H = numpy . matrix (’1 0 0 0 0 0;

0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0’);

R = numpy . matlib . identity (4);
R [:] = [b ∗42.25 for b in R];
P = numpy . matlib . identity (6);
P [:] = [c ∗10000 for c in P];

n = 1;

CMT = CMT . CMT ()
f =io. open (’video . h264 ’,’rb ’)

if (True):

counter = 0

Here we read frames from f and write them to a temp file
red = f. read ()
w = io. open (str (counter)+ ’temp . h264 ’,’wb ’)

w. write (red)
w. close () #−loglevel panic

This converts the h264 ti mp4
subprocess . call (" ffmpeg −loglevel panic −y −i "+ str (counter)+" temp . h264 vid files / im 0 "+ str (counter)+". mp4 ", shell = True)

Is this necessary ?
time . sleep (2)
print " here "
cap = cv2 . VideoCapture (" vid files / im 00 . mp4 ")
print " here "
status , im0 = cap . read ()
im gray0 = cv2 . cvtColor (im0 , cv2 . COLOR BGR2GRAY)
im draw = numpy . copy (im0)

tl , br = util . get rect (im draw)

print "t1: " + str (tl) + " br: " + str (br)

CMT . initialise (im gray0 , tl , br)

frame = 1

#We always sleep between conversion and capture (do we need to ?)
counter +=1
while True :

Read image
status , im = cap . read ()
print " Status : " + str (status) + " of Frame #" + str (frame)
if(counter %10!=1):

counter +=1
continue

#If we ’ve run out of frames for that mp4 ...
if not status or counter == 1:

cap . release ()
red = f. read () # Get more frames !!
w = io. open (str (counter)+ ’temp . h264 ’,’wb ’)
w. write (red)
w. close () #−loglevel panic
subprocess . call (" ffmpeg −loglevel panic
−y −i "+ str (counter)+" temp . h264 im 0 "+ str (counter)+". mp4 ", shell = True)
Is this necessary ?
time . sleep (1)
cap = cv2 . VideoCapture (" im 0 "+ str (counter)+". mp4 ")
counter +=1
status , im = cap . read ()

im gray = cv2 . cvtColor (im , cv2 . COLOR BGR2GRAY)
im draw = numpy . copy (im)

tic = time . time ()
CMT . process frame (im gray)
toc = time . time ()

Display results
Draw updated estimate
if CMT . has result :

cv2 . line (im draw , CMT .tl , CMT .tr , (255 , 0, 0) , 4)
cv2 . line (im draw , CMT .tr , CMT .br , (255 , 0, 0) , 4)
cv2 . line (im draw , CMT .br , CMT .bl , (255 , 0, 0) , 4)
cv2 . line (im draw , CMT .bl , CMT .tl , (255 , 0, 0) , 4)

util . draw keypoints (CMT . tracked keypoints , im draw , (255 , 255 , 255))
this is from simplescale
util . draw keypoints (CMT . votes [: , :2] , im draw) # blue
util . draw keypoints (CMT . outliers [: , :2] , im draw , (0 , 0, 255))

Draw output image

cv2 . imwrite (’ {0}/ output {1:08 d }. png ’. format
(args . output , frame), im draw)

with open (’ {0}/ bbox {1:08 d }. csv ’. format (args . output ,
frame), ’w’) as z:

z. write (’x y \n’)
numpy . savetxt (z, numpy . array ((CMT .tl ,
CMT .tr , CMT .br , CMT .bl , CMT .tl)) , fmt =’%.2 f’)

Draw Kalman Filter here instead
number = ’%08 d’%(n);
filename = (’ output / bbox ’ + number + ’. csv ’);
if not os. path . isfile (filename):

break ;

read in the detected object ’s bounding box dimensions
fid = open (filename);
fid . readline (); # ignore the header
detections = [];
for i in fid :

detections . append (i. strip (). split (’ ’));
fid . close ();

meas x1 = float (detections [0][0]);
meas x2 = float (detections [2][0]);
meas y1 = float (detections [0][1]);
meas y2 = float (detections [2][1]);
z = numpy . matrix ([[meas x1], [meas x2],
[meas y1], [meas y2]]);

step 1: predict
result = kalman predict (x,P,F,Q);
x = result [0];
P = result [1];

step 2: update (if measurement exists)
if all (j>0 for j in z):

result = kalman update (x,P,z,H,R);
x = result [0];
P = result [1];

est z = H ∗x;
est x1 = est z [0];
est x2 = est z [1];
est y1 = est z [2];
est y2 = est z [3];
center = est x1 /2.0+ est x2 /2.0
if(center >330):

print " MOVE RIGHT "
g = open (’file . txt ’,’w’)
g. write ("1")
g. close ()

#if(center)
draw a bounding box around the detected object
imgname = ’ output / output ’ + number + ’. png ’;
img = cv2 . imread (imgname , 1);

if all (k > 0 for k in est z) and
(est x2 >est x1) and (est y2 >est y1):

cv2 . rectangle (img , (est x1 , est y1),
(est x2 , est y2), (0 ,255 ,0) , 2);

cv2 . imshow (’ KalmanFilter ’,img);
cv2 . waitKey (1);

n += 1;

cv2 . imshow (’ main ’, im draw)

Check key input
k = cv2 . waitKey (1)
key = chr (k & 255)
if key == ’q’:

break

Remember image
im prev = im gray

Advance frame number

frame += 1

f. close ()

	BACKGROUND
	PROBLEM IDENTIFICATION
	PROJECT AIM
	RESEARCH QUESTIONS
	SIGNIFICANCE OF RESEARCH QUESTIONS
	LITERATURE REVIEW
	THEORETICAL FRAMEWORK
	RESEARCH METHODS/METHODOLOGY
	RESULTS
	CONCLUSIONS
	RESOURCES
	References
	APPENDIX

