
Cinema Information Retrieval from Wikipedia

John Ryan
Courant Institute of Mathematical Sciences

251 Mercer St.
New York, NY 10012

jpr349@cims.nyu.edu

Abstract

In this paper, we explore various meth-
ods for information retrieval from a
text corpus and how they compare
when used to find the common link be-
tween several elements of a query. We
do so with several experiments on a
corpus of Wikipedia articles on movies
and actors in cinema.

1 Introduction

Perhaps the best way to reference a movie,
having forgotten the title, is to hint at it by
listing starring actors. ”I can’t remember the
exact name, but it’s the one with Jennifer
Lawrence and Bradley Cooper.” Conversely,
for lack of a name to place to a face, one
may say ”she was in Annie Hall and The
Godfather,” and hope that someone else can
name the actress. Nowadays, this problem
is quickly solved by Google - for example, a
Google search of ”Annie Hall The Godfather”
returns the IMDB page and the Wikipedia
page for Diane Keaton within the first three
results. The search has found the common
link between the two different entities of the
same category which we inputted.

Suppose we’d like to perform this task of-
fline on a corpus with an algorithm of our
own. Jurafsky and Martin (2000) suggest us-
ing a TF-IDF vector space model and evalu-
ating relevancy by cosine similarity. We will
implement this system, and we will compare
the results when we change the term weight-
ing, and when we change the pairwise simi-
larity metric.

2 Problem Statement

Our corpus is about 4,300 Wikipedia arti-
cles (coverted to ASCII-only .txt documents).
Around twenty percent of these articles de-
scribe actors, and the rest describe movies.
The goal of our system will be to take as input
a query of several elements of the same cat-
egory (in this case, either actors or movies)
and output the common link between those
elements in a different category. For ex-
ample, the system should respond to the in-
put ”Annie Hall The Godfather” with ”Diane
Keaton,” and the input ”Jennifer Lawrence
Bradley Cooper” with ”Silver Linings Play-
book” (or ”American Hustle”).

2.1 Corpus

The corpus contains about 4,300 documents;
1,000 correspond to actors and 3,300 to
movies. The documents are plaintext files ob-
tained by downloading the Wikipedia articles’
.html files and using the textutil tool in the
Mac OS X terminal to convert from .html to
.txt. Since the Vectorizer requires ASCII char-
acters, a Java program using the Normalizer
class was used to reduce non-ASCII which
corresponded with ASCII characters (so that,
for example, ”Renée Zellweger” would be-
come ”Renee Zellweger” instead of ”Rene
Zellweger”), and to get rid of all other non-
ASCII symbols. Finally, everything below the
”References” section header in the article (ev-
ery Wikipedia page has one) was deleted to
save space and keep things clean.

2.2 Vectorizer

Since the system will evaluate relevancy by
comparing vectors by some pairwise metric,

our first task is to decide how to represent
queries and documents as vectors with real en-
tries. In this case, we will consider the entries
of the vectors (i.e. the tokens) to be n-grams
in the vocabulary of the corpus.

The clear first choice for a vector repre-
sentation is contained within sklearn’s ”fea-
ture extraction” library, and it is found by the
CountVectorizer. In this model, the value for
a given token in the vector of a query or doc-
ument is just its frequency. For example, if
we are using CountVectorize with n = 1, then
the vector for ”foo foo bar bar bar” would look
like {2, 3} (where remaining entries for other
tokens in the corpus would be 0).

Our second choice for vector representation
is analogous to our first, and it is found by
the HashingVectorizer. In this model, the en-
try for a given n-gram is again its frequency
in the document, but now it is computed us-
ing a hash table. How is this different? On
the one hand, our computations are sped up,
since determining if we have seen a certain
token before takes constant time now. How-
ever, we risk having two tokens map to the
same entry (a collision in the hash table), and
having the vector be slightly misrepresenta-
tive. According to the documentation given
by sklearn, this is not a big problem in gen-
eral; however, we will see that our system’s
success may be affected by these collisions,
undoubtedly owing to the size of our corpus.

The third and final choice for vector repre-
sentation which we will test in our implemen-
tation is that of the TfidfVectorizer, The key
difference in this model is that terms which
appear only in a few documents are given
much more weight. We expect this to be
a much more effective model than the other
two, as it is the only one we will use which
weights a term with respect to both its doc-
ument and the corpus. An example of the
power of this weighting is found by consid-
ering the query ”Ellen Page Marion Cotil-
lard.” Whereas the CountVectorizer and Hash-
ingVectorizer would mistakenly assign more
relevancy to documents containing multiple
occurrences of ”page” and articles for other

actresses named Ellen, the TfidfVectorizer
would recognize how ”page” and ”ellen” are
much more common in the corpus than ”mar-
ion” or ”cotillard,” and thus would assign rel-
evancy more strongly to those containing the
latter terms. We expect that this impact will
also be notable in our data when we include
in our input a movie with the token ”ameri-
can” within, such as ”American Hustle.”

One might argue that cases such as those
described in the previous paragraph will be
fixed when n is set to 2. For example, the
system wouldn’t fall into the trap of consid-
ering ”Ellen DeGeneres” when the token is
”Ellen Page” instead of ”Ellen”. However,
suppose we use a query such as ”John Ratzen-
berger Billy Crystal” when looking for a cer-
tain Pixar film. When n = 2, we are saved
from assigning relevancy to all the John’s
and Billy’s in the corpus; however, as far as
Pixar movies are concerned, the token ”John
Ratzenberger” is redundant, since he has been
in every single Pixar movie. It would help if,
recognizing that Billy Crystal is more helpful
in distinguishing the movie, his name be given
more weight.

2.3 Comparing Vectors: Pairwise
Metrics

In our implementation, we will compare re-
sults from two different metrics for pairwise
similarity of vectors. The motivation for such
techniques is that we’d like a quick way to de-
cide how similar a document is to a query by
analyzing the difference between the two vec-
tor representations in the multi-dimensional
vector space.

The Cosine Similarity metric is solely con-
cerned with the angle between the two vec-
tors. We know that, for vectors x and y,

xyT = |x||y| cos θ

where θ is the angle between the two vectors.
Thus, to find where the angle is small, we only
need to find where

xyT

|x||y|
(1)

What i s t h e que ry ?
s t e v e mar t i n ,
j ohn candy ,
l a i l a r o b i n s
C a l c u l a t i n g T f i d f Ma t r i x
Using TFIDF wi th Cos ine S i m i l a r i t y
10 P lanes , T r a i n s a n d A u t o m o b i l e s
9 S t e v e M a r t i n
8 N o t h i n g b u t T r o u b l e (1991 f i l m)
7 F a t h e r o f t h e B r i d e (1991 f i l m)
. . .

Figure 1: Sample output

is close to 1 (this is algorithmically easy).
Thus, if x and y plugged into (1) gives 0.5 and
x and y′ gives 0.75, then we believe that doc-
ument y′ is more relevant to document x than
document y. We note that if x and y are nor-
malized to begin with, than (1) is equivalent
to

xyT (2)

This leads us to the second pairwise metric
we will use to evaluate query/document rele-
vance: the Sigmoid Kernel. Starting with nor-
malized x and y, the Sigmoid Kernel is

tanh (γxyT + c0)

where γ is known as the slope and c0 as the
intercept (these are chosen for us by sklearn).
Again, we are looking for x and y which make
this as close to one as possible.

The Sigmoid Kernel is included in the ex-
periments detailed in this paper and in the fi-
nal program because it produced the most in-
teresting results of the pairwise metrics pro-
vided by sklearn.

3 Experiments

Since we will be working with two differ-
ent pairwise metrics and three different vec-
tor space models, we have six different tech-
niques by which to extract information from
the corpus so as to answer a user’s query.
Keeping in mind that the goal is to iden-
tify the common link among elements of the

user’s query, we will ask random students at
New York University for sample queries along
with the intended common link. The reason
for picking random students (as opposed to
other computer science students) is to attempt
to best emulate the average Google user and
his/her lack of understanding of the underly-
ing algorithms and what queries will make it
harder for the system. With at least 40 such
queries, we will begin testing.

The test works by having a user pass the
system a query, to which the system responds
with ten guesses as to the common link be-
tween the elements in the query. For simplic-
ity, we consider sequels containing the same
cast to be identical to originals (for example, a
guess of ”The Matrix Revolutions” is as good
a guess as ”The Matrix” when given a query
containing actors in both movies). A sample
output is given in Figure 1.

Because we are intentionally asking the
system for at least 9 incorrect results, not
much is found by evaluating F-score in the
usual manner. Instead, we will evaluate the
different techniques by awarding points for
each correct guess based on its position in the
output. For example, in Figure 1, the tech-
nique earned itself 10 points because the user
was thinking of ”Planes, Trains, and Automo-
biles.” If the user had been thinking of ”Father
of the Bride,” that would have been worth 7
points. If the user’s intended link doesn’t ap-
pear on the list, that is worth 0 points. Af-
ter the 40 rounds of testing, the points will be
summed up and compared.

3.1 Results

The experiments were successful, and the re-
sults match what we predicted in some cases,
and surprise us in others. Before discussing
the performances of the information retrieval
techniques, we make some comments on the
execution of the experiments.

The first aspect worthy of comment is the
runtime. Calculating the matrices for the vec-
tors took about 11 seconds for n = 1, re-
gardless of the vectorization method. Further-
more, when n = 2, the CountVectorizer and

Figure 2: Results for the six techniques

TfidfVectorizer took 55 seconds and the Hash-
ingVectorizer took 25 seconds. It must be the
case that an effective search engine would pre-
process these values when it crawls the web
for pages to return. Then, the pairwise met-
ric calculations and subsequent ranking of the
vectors took less than a second, a speed surely
owing to the algorithmic efficiency mentioned
earlier.

Figure 2 contains the points data for using
Cosine Similarity as the pairwise metric when
trying to find the movie in which all actors
in the query appeared. The maximum possi-
ble score would be 200, and would have been
achieved if the intended movie had been the
system’s first guess for all 20 rounds.

Many aspects of these results were ex-
pected. In both the 1-gram and 2-gram
cases, using TFIDF for the vector represen-
tations resulted in the most success. Fur-
thermore, the scores didn’t vary between us-
ing CountVectorizer and HashingVectorizer.
However, something quite unpredictable hap-

pened during the testing that the graph in Fig-
ure 2 doesn’t represent. In many cases where
the other five techniques failed, using Sig-
moid Kernel with CountVectorizer succeeded
greatly. One such example (drawn from the
system’s output files, all of which are in-
cluded in the package corresponding to this
paper) is when a user queried ”daniel craig
eva green mads mikkelsen,” referring to the
movie ”Casino Royale.” To that input, the sys-
tem was able to correctly identify the movie
for the other five techniques, earning 8 points
for each of those methods. However, the Sig-
moid Kernel technique was wrong in all of its
top ten guesses, earning 0 points.

On the other hand, when passed the query
”marion cotillard joseph gordon-levitt ellen
page” (referring to ”Inception”), whereas the
TFIDF techniques earned one point each and
the Hashing techniques and the Count tech-
nique with Cosine Similarity earned 0 points,
the Count technique with Sigmoid Kernel
earned 9 points. Due to the counterintuitive

Figure 3: Results which we didn’t expect

nature of these results, the code was double
checked (the code is the same across all tech-
niques with a few words changed) and the
tests tried again several time; the results were
validated.

Furthermore, when passed the query for
”Casino Royale,” the system was able to come
up with relevant results, such as ”Skyfall,”
”Spectre,” and ”The Golden Compass”; each
of these guesses is correct for exactly one of
the three actors mentioned in the query. On
the other hand, when passed the query for ”In-
ception,” most of the guesses featured only
one of the three actors.

Our suspicion is that the weakness in the
methods in these cases is due to the fact that,
given a query like ”dicaprio winslet,” the sys-
tem believes (except in the TFIDF cases) that
”dicaprio dicaprio,” ”dicaprio winslet,” and
”winslet winslet” are of equal relevance to
the query (this generalizes easily to n-grams).
Therefore, articles starring one of the actors,
but mentioning him/her very many times, will

be considered over the target article, which,
although being very unique in that it men-
tions all actors, may only mention them a few
times.

4 Future Work

There are a number of areas for future devel-
opment. One problem with our current model
is that 2-gram analysis on a query contain-
ing one word entities will perform undesir-
ably. For example, the query ”prince of egypt
hugo searching for bobby fischer” will not be
helped by the presence of ”hugo”, since it
will stupidly look for ”egypt hugo” and ”hugo
searching”. A potential solution to this would
be to vectorize with respect to 1-grams and 2-
grams, but then we might run into problems
with Hugo Weaving”. This conundrum de-
serves more thought.

Currently, the program computes the ma-
trices of vectors again for each query (since
the first vector of the matrix represents the
query, the matrix changes marginally for each

query). It would speed up testing a great deal
to have the matrices computed once, before
all of the queries, and then updated for each
query. Furthermore, higher level n-grams
would be reasonable to implement.

Although this sounds simple, there are a
few reasons it’s a nontrivial task.

1. The vector representing the query needs
to be the same shape as the matrix. For
example, if there are 1000 tokens in the
corpus, the size of the vector for the
query needs be 1x1000.

2. If the query contains a token that doesn’t
appear in the corpus, the matrix needs to
have a row added (or the word should be
disregarded).

Furthermore, although we specifically con-
centrated our examples in cinema, the only
detail of our corpus which we used to our ad-
vantage is that our desired system output is the
title of one of the documents. Therefore, the
problem could be generalized to any such cor-
pus. An example would be identifying artists
by their works, researchers by their discover-
ies, and more.

Finally, our 2-gram analysis was flawed in
that, as a result of using the default skearn,
we would split a query like ”marion cotillard
tom hardy” into ”marion cotillard”, ”cotillard
tom”, ”tom hardy”. While the presence of
”cotillard tom” affects neither our runtimes
nor our results in our experiments, we would
run into problems with a query like ”elton
john wayne newton”. A potential solution to
this could include the user inputting the ele-
ments of the query separately.

Using Count wi th s igmoid k e r n e l
10 S k y f a l l
9 The Hunt (2012 f i l m)
8 S i n C i t y : A D a m e t o K i l l F o r
7 300 : R i s e o f a n E m p i r e
6 Cowboys & A l i e n s
5 The Golden Compass (f i l m)
4 Kingdom of Heaven (f i l m)
3 S p e c t r e (2015 f i l m)
2 T h e S a l v a t i o n (f i l m)
1 D e f i a n c e (2008 f i l m)

Figure 4: Failure to find ”Casino Royale”

Acknowledgments

The author would like to thank Adam Meyers
for his help and support and the survey sub-
jects for their creative contributions.

References
Jurafsky, Daniel, and James H. Martin. Speech and

Language Processing : An Introduction to Natu-
ral Language Processing, Computational Linguis-
tics, and Speech Recognition. Upper Saddle River,
NJ: Prentice Hall, 2000. Print.

Bird, Steven, Ewan Klein, and Edward Loper. Natu-
ral language processing with Python. Beijing Cam-
bridge Mass: O’Reilly, 2009. Print.

Scikit-learn: Machine Learning in Python, Pedregosa
et al., JMLR 12, pp. 2825-2830, 2011.

